Disturbance Level Mediates the Differential Resistance of Tropical Dry Forest Soil and Vegetation Attributes to High-Intensity Hurricanes

Author:

Montiel-González Cristina,Bravo-Monzón Ángel E.,Flores-Puerto José Israel,Valadez-Cortés Fabiola,Azcoytia-Escalona Luz Elena,García-Oliva Felipe,Arena-Ortiz María Leticia,Alvarez-Añorve Mariana Yolotl,Avila-Cabadilla Luis DanielORCID

Abstract

AbstractHurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3