Changes in How Climate Forces the Vegetation of Southern Africa

Author:

Higgins Steven I.,Conradi Timo,Ongole Shasank,Turpie Jane,Weiss Joshua,Eggli Urs,Slingsby Jasper A.

Abstract

AbstractGlobal climatic changes are altering ecosystem structure and functioning, yet detecting and forecasting such change is difficult. In this study, we use the concept of a phytoclime—a region where climate favours the growth of similar combinations of plant types—to examine how changes in climate forcing may impact on regional vegetation. We use species distribution data to estimate the parameters of a physiological plant growth model for 5006 vascular plant species common to southern Africa. Plant type suitability surfaces are calculated as the average climatic suitability of locations for all species belonging to a plant type. We calculated plant type suitability surfaces for ten different plant types. The resulting surfaces were used to produce a spatial classification of phytoclimes, which we interpret as regions that can climatically support particular plant type combinations. We use the phytoclime definitions and climatologies from five global circulation models (GCMs) simulating three shared economic pathways (SSPs) to forecast how the climatic forcing underlying the phytoclimes will change. Our analyses forecast that change in phytoclime state will be widespread throughout the region. There were, however, substantial differences in the timing of when changes would occur. The central interior of the region was forecast to change earlier than the arid west and southern coast. These differences in timing were driven by differences in the responses of trees, succulents, C3 and C4 grasses to the GCMs forecast aridification of the region’s central interior. Phytoclime modelling provides an indication of the potential of a region’s climate to support different plant types; it thereby provides forecasts of the potential impacts of climate change on regional vegetation structure and functioning.

Funder

Bundesministerium für Bildung und Forschung

National Research Foundation

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3