Fungal Biodiversity Mediates the Effects of Drying on Freshwater Ecosystem Functioning

Author:

Arias-Real RebecaORCID,Gutiérrez-Cánovas CayetanoORCID,Muñoz IsabelORCID,Pascoal CláudiaORCID,Menéndez MargaritaORCID

Abstract

AbstractInvestigating the influence of biodiversity on ecosystem functioning over environmental gradients is needed to anticipate ecosystem responses to global change. However, our understanding of the functional role of freshwater biodiversity, especially for microbes, is mainly based on manipulative experiments, where biodiversity and environmental variability are minimized. Here, we combined observational and manipulative experiments to analyse how fungal biodiversity responds to and mediates the impacts of drying on two key ecosystem processes: organic matter decomposition and fungal biomass accrual. Our observational data set consists of fungal biodiversity and ecosystem processes from 15 streams spanning a natural gradient of flow intermittence. Our manipulative design evaluates the responses of ecosystem processes to two fungal richness levels crossed with three levels of drying. For the observational experiment, we found that increasing the duration of drying reduced fungal species richness and caused compositional changes. Changes in species composition were driven by species turnover, suggesting resistance mechanisms to cope with drying. We also found that fungal richness had a positive effect on organic matter decomposition and fungal biomass accrual. Positive effects of fungal biodiversity were consistent when controlling for the effects of drying duration on richness by means of structural equation modelling. In addition, our results for the manipulative experiment showed that the positive effects of higher richness on both ecosystem processes were evident even when exposed to short or long simulated drying. Overall, our study suggests that maintaining high levels of biodiversity is crucial for maintaining functional freshwater ecosystems in response to ongoing and future environmental changes.

Funder

Fundação para a Ciência e a Tecnologia

European Regional Development Fund

Secretaría de Estado de Investigación, Desarrollo e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3