Author:
Huddell Alexandra,Neill Christopher,Palm Cheryl A.,Nunes Darlisson,Menge Duncan N. L.
Abstract
AbstractDeep tropical soils with net anion exchange capacity can adsorb nitrate and might delay the eutrophication of surface waters that is often associated with many temperate croplands. We investigated anion exchange capacity and soil nitrate pools in deep soils in the Southern Brazilian Amazon, where conversion of tropical forest and Cerrado to intensive fertilized soybean and soybean-maize cropping expanded rapidly in the 2000s. We found that mean soil nitrate pools in the top 8 m increased from 143 kg N ha−1 in forest to 1,052 in soybean and 1,161 kg N ha−1 in soybean-maize croplands. This nitrate accumulation in croplands aligned with the estimated N surpluses in the croplands. Soil anion exchange capacity explained the magnitude of nitrate accumulation. High nitrate retention in soils was consistent with current low levels of streamwater nitrate exported from croplands. Soil exchange sites were far from saturation, which suggests that nitrate accumulation can continue for longer under current cropping practices, although mechanisms such as competition with other anions and preferential water flowpaths that bypass exchange sites could reduce the time to saturation.
Funder
Earth Institute, Columbia University
United States Agency for International Development
Conselho Nacional de Desenvolvimento Científico e Tecnológico
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献