Abstract
AbstractAcross the tropics, climate change is increasing the frequency and severity of wildfires, exposing tropical forests to the risk of shifting into an open vegetation state. A recent satellite analysis of the Amazon basin suggests this might happen first in floodplains where forests are particularly fragile. We studied floodplain landscapes of the middle Rio Negro, covering ~ 4100 km2 at the Central Amazon region, where forest ecosystems are dominant. We used Landsat images to map 40 years of wildfire history and test the hypothesis that repeatedly burnt forests fail to regenerate and can be replaced by white-sand savanna ecosystems. In the field, using a chronosequence of ‘time after the first fire’, we assessed changes in tree species composition, herbaceous cover and topsoil properties. Here we show that when these forests are repeatedly disturbed by wildfires, their soil gradually loses clay and nutrients and becomes increasingly sandy. In synchrony, native herbaceous cover expands, forest tree species disappear and white-sand savanna tree species become dominant. This drastic ecosystem shift happened within 40 years, likely accelerated by topsoil erosion. When recurrent fires maintain floodplain forests in an open vegetation state, topsoil erosion intensifies, transforming clay-rich soils into white-sand soils that may favour savanna tree species. Our findings reveal that white-sand savannas may expand through seasonally flooded ecosystems at the core of the Amazon, facilitated by wildfires.
Funder
Wageningen University and Research Centre
Fundação de Amparo à Pesquisa do Estado de São Paulo
Fundação de Amparo à Pesquisa do Estado do Amazonas
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献