Impact of Drought on Ecohydrology of Southern California Grassland and Shrubland

Author:

Chavez Rodriguez Luciana,Parker Scot,Fiore Nicole M.,Allison Steven D.,Goulden Michael L.

Abstract

AbstractThrough their rooting profiles and water demands, plants affect the distribution of water in the soil profile. Simultaneously, soil water content controls plant development and interactions within and between plant communities. These plant-soil water feedbacks might vary across plant communities with different rooting depths and species composition. In semiarid environments, understanding these differences will be essential to predict how ecosystems will respond to drought, which may become more frequent and severe with climate change. In this study, we tested how plant-soil water feedbacks responded to drought in two contrasting ecosystem types—grassland and shrubland—in the coastal foothills of southern California. During years 5–8 of an ongoing precipitation manipulation experiment, we measured changes in plant communities and soil moisture up to 2 m depth. We observed different water use patterns in grassland and shrubland communities with distinct plant functional types and water use strategies. Drought treatment did not affect perennial, deep-rooted shrubs because they could access deep soil water pools. However, mid-rooted shrubs were sensitive to drought and experienced decreased productivity and die-off. As a result, water content actually increased with drought at soil depths from 50–150 cm. In grassland, biomass production by annual species, including annual grasses and forbs, declined with drought, resulting in lower water uptake from the surface soil layer. An opportunistic “live fast, die young“ life strategy allowed these species to recover quickly once water availability increased. Our results show how drought interacts with plant community composition to affect the soil water balance of semiarid ecosystems, information that could be integrated into global scale models.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3