An Outlook for Deep Learning in Ecosystem Science

Author:

Perry George L. W.,Seidl Rupert,Bellvé André M.,Rammer Werner

Abstract

AbstractRapid advances in hardware and software, accompanied by public- and private-sector investment, have led to a new generation of data-driven computational tools. Recently, there has been a particular focus on deep learning—a class of machine learning algorithms that uses deep neural networks to identify patterns in large and heterogeneous datasets. These developments have been accompanied by both hype and scepticism by ecologists and others. This review describes the context in which deep learning methods have emerged, the deep learning methods most relevant to ecosystem ecologists, and some of the problem domains they have been applied to. Deep learning methods have high predictive performance in a range of ecological contexts, leveraging the large data resources now available. Furthermore, deep learning tools offer ecosystem ecologists new ways to learn about ecosystem dynamics. In particular, recent advances in interpretable machine learning and in developing hybrid approaches combining deep learning and mechanistic models provide a bridge between pure prediction and causal explanation. We conclude by looking at the opportunities that deep learning tools offer ecosystem ecologists and assess the challenges in interpretability that deep learning applications pose.

Funder

H2020 European Research Council

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3