Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Coffee Samples by DI-SPME-GC/MS

Author:

Aresta Antonella Maria,Zambonin Carlo

Abstract

AbstractRoasting is a crucial and essential step to produce quality coffee. However, it could lead to the formation of toxic and suspected carcinogenic or procancerogenic compounds, such as polycyclic aromatic hydrocarbons. In this work, a simple and easily automatable green procedure based on solid-phase microextraction coupled with gas chromatography for the analysis of acenaphthene, anthracene, benzo[ghi]perylene, benzo[a]pyrene, chrysene, fluoranthene, fluorene, naphthalene, and pyrene, in dark roasted and decaffeinated commercial coffees, was developed. The method was optimized for the determination of the analytes both in solid samples, such as ground coffee or coffee grounds, and liquids, such as espresso coffee, using a polyacrylate-coated fused silica fiber (85 μm) by direct immersion. The performance of the analytical method, developed in terms of sensitivity, reproducibility, and recoveries, proved to be suitable for the applications. Among the 9 polycyclic aromatic hydrocarbons investigated in the selected coffees, chrysene and pyrene were the most representative congeners with values ranging from undetectable to 95.6 ± 11 ng/g for chrysene and from undetectable to 404.7 ± 42.0 ng/g for pyrene. Benzo[a]pyrene was detected in two samples of dark roasted coffee which therefore had the highest toxicity/carcinogenicity in terms of toxic equivalent. The estimated limit of detection for benzo[a]pyrene in ground coffee and coffee grounds was 9.0 ng/g. About 30% of the PAHs were transferred to the infusion while the remaining part was retained by the coffee grounds.

Funder

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

Subject

Safety Research,Safety, Risk, Reliability and Quality,Applied Microbiology and Biotechnology,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3