Abstract
AbstractWe consider the ferromagnetic quantum Heisenberg model in one dimension, for any spin $$S\ge 1/2$$
S
≥
1
/
2
. We give upper and lower bounds on the free energy, proving that at low temperature it is asymptotically equal to the one of an ideal Bose gas of magnons, as predicted by the spin-wave approximation. The trial state used in the upper bound yields an analogous estimate also in the case of two spatial dimensions, which is believed to be sharp at low temperature.
Funder
NCN Poland
European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference27 articles.
1. Andrei, N.: Diagonalization of the Kondo Hamiltonian. Phys. Rev. Lett. 45, 379–382 (1980)
2. Andrei, N.: Solution of the multichannel Kondo problem. Phys. Rev. Lett. 52, 364–367 (1984)
3. Andrei, N., Jerez, A.: Fermi- and non-Fermi-liquid behavior in the anisotropic multichannel Kondo model: Bethe Ansatz solution. Phys. Rev. Lett. 74, 4507–4510 (1995)
4. Andrei, N., Lowenstein, J.H.: Diagonalization of the chiral-invariant Gross-Neveu Hamiltonian. Phys. Rev. Lett. 43, 1698–1701 (1979)
5. Benedikter, N.: Interaction corrections to spin-wave theory in the large-$$S$$ limit of the quantum Heisenberg ferromagnet. Math. Phys. Anal. Geom. 20(5), 1–21 (2017)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献