Abstract
AbstractFeynman integrals are solutions to linear partial differential equations with polynomial coefficients. Using a triangle integral with general exponents as a case in point, we compare D-module methods to dedicated methods developed for solving differential equations appearing in the context of Feynman integrals, and provide a dictionary of the relevant concepts. In particular, we implement an algorithm due to Saito, Sturmfels, and Takayama to derive canonical series solutions of regular holonomic D-ideals, and compare them to asymptotic series derived by the respective Fuchsian systems.
Funder
FP7 Ideas: European Research Council
Deutsche Forschungsgemeinschaft
Knut och Alice Wallenbergs Stiftelse
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Agostini, D., Fevola, C., Sattelberger, A.-L., Telen, S.: Vector Spaces of Generalized Euler Integrals. Commun. Number Theory Phys. (2024, to appear) Preprint arXiv:2208.08967
2. Ait El Manssour, R., Härkönen, M., Sturmfels, B.: Linear PDE with constant coefficients. Glasg. Math. J. 65(S1), 2–27 (2023)
3. Ananthanarayan, B., Banik, S., Bera, S., Datta, S.: FeynGKZ: a Mathematica package for solving Feynman integrals using GKZ hypergeometric systems. Comput. Phys. Commun. 278, 108699 (2023)
4. Anastasiou, C., Glover, E.W.N., Oleari, C.: Scalar one loop integrals using the negative dimension approach. Nucl. Phys. B 572, 307–360 (2000)
5. Andres, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönemann, H.: Constructive D-module theory with Singular. Math. Comput. Sci. 4(2–3), 359–383 (2010)