Abstract
AbstractWe consider the Lie derivative along Killing vector fields of the Dirac relativistic spinors: By using the polar decomposition we acquire the mean to study the implementation of symmetries on Dirac fields. Specifically, we will become able to examine under what conditions it is equivalent to impose a symmetry upon a spinor or only upon its observables. For one physical application, we discuss the role of the above analysis for the specific spherical symmetry, obtaining some no-go theorem regarding spinors and discussing the generality of our approach.
Funder
Laboratori Nazionali del Gran Sasso
Università degli Studi di Genova
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. 257, 7 (1963)
2. Kosmann, Y.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. 91, 317 (1971)
3. Jhangiani, V.: Geometric significance of the spinor lie derivative. Found. Phys. 8, 445 (1978)
4. Penrose, R., Rindler, W.: Spinors and Spacetime, vol. 2. Cambridge University Press, Cambridge (1986)
5. Godina, M., Matteucci, P.: Reductive G-structures and Lie derivatives. J. Geom. Phys. 47, 66 (2003)