A cluster of results on amplituhedron tiles

Author:

Even-Zohar Chaim,Lakrec Tsviqa,Parisi MatteoORCID,Sherman-Bennett Melissa,Tessler Ran,Williams Lauren

Abstract

AbstractThe amplituhedron is a mathematical object which was introduced to provide a geometric origin of scattering amplitudes in $$\mathcal {N}=4$$ N = 4 super Yang–Mills theory. It generalizes cyclic polytopes and the positive Grassmannian and has a very rich combinatorics with connections to cluster algebras. In this article, we provide a series of results about tiles and tilings of the $$m=4$$ m = 4 amplituhedron. Firstly, we provide a full characterization of facets of BCFW tiles in terms of cluster variables for $$\text{ Gr}_{4,n}$$ Gr 4 , n . Secondly, we exhibit a tiling of the $$m=4$$ m = 4 amplituhedron which involves a tile which does not come from the BCFW recurrence—the spurion tile, which also satisfies all cluster properties. Finally, strengthening the connection with cluster algebras, we show that each standard BCFW tile is the positive part of a cluster variety, which allows us to compute the canonical form of each such tile explicitly in terms of cluster variables for $$\text{ Gr}_{4,n}$$ Gr 4 , n . This paper is a companion to our previous paper “Cluster algebras and tilings for the $$m=4$$ m = 4 amplituhedron.”

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

U.S. Department of Energy

National Science Foundation

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Even-Zohar, C., Lakrec, T., Parisi, M., Tessler, R., Sherman-Bennett, M., Williams, L.: Cluster algebras and tilings for the m= 4 amplituhedron. arXiv preprint arXiv:2310.17727 (2023)

2. Even-Zohar, C., Lakrec, T., Tessler, R.J.: The amplituhedron BCFW triangulation. full version of preprint arXiv:2112.02703 (2021)

3. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry. Progr. Math., vol. 123, pp. 531–568. Birkhäuser Boston, Boston (1994)

4. Postnikov, A.: Total positivity, Grassmannians, and networks (2006), arXiv:math/0609764

5. Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes, p. 194. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316091548

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3