A probabilistic framework for particle-based reaction–diffusion dynamics using classical Fock space representations

Author:

del Razo Mauricio J.ORCID,Frömberg Daniela,Straube Arthur V.ORCID,Schütte Christof,Höfling FelixORCID,Winkelmann StefanieORCID

Abstract

AbstractThe modeling and simulation of stochastic reaction–diffusion processes is a topic of steady interest that is approached with a wide range of methods. At the level of particle-resolved descriptions, where chemical reactions are coupled to the spatial diffusion of individual particles, there exist comprehensive numerical simulation schemes, while the corresponding mathematical formalization is relatively underdeveloped. The aim of this paper is to provide a framework to systematically formulate the probabilistic evolution equation, termed chemical diffusion master equation (CDME), that governs particle-based stochastic reaction–diffusion processes. To account for the non-conserved and unbounded particle number of this type of open systems, we employ a classical analogue of the quantum mechanical Fock space that contains the symmetrized probability densities of the many-particle configurations in space. Following field-theoretical ideas of second quantization, we introduce creation and annihilation operators that act on single-particle densities and provide natural representations of symmetrized probability densities as well as of reaction and diffusion operators. These operators allow us to consistently and systematically formulate the CDME for arbitrary reaction schemes. The resulting form of the CDME further serves as the foundation to derive more coarse-grained descriptions of reaction–diffusion dynamics. In this regard, we show that a discretization of the evolution equation by projection onto a Fock subspace generated by a finite set of single-particle densities leads to a generalized form of the well-known reaction–diffusion master equation, which supports non-local reactions between grid cells and which converges properly in the continuum limit.

Funder

Deutsche Forschungsgemeinschaft

Germany’s Excellence Strategy – MATH+

Dutch Institute of Emergent Phenomena

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference114 articles.

1. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937). https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

2. Kolmogorov, A., Petrovsky, I., Piscounov, N.: Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull. Univ. Moscow Ser. Internat. Sec. A 1 (1937). https://ci.nii.ac.jp/naid/10003528013

3. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003). https://doi.org/10.1016/j.physrep.2003.08.001

4. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

5. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3