Abstract
AbstractThe Turaev–Viro state sum invariant can be extended to 3-manifolds with free boundaries. We use this fact to describe generalized Frobenius–Schur indicators as Turaev–Viro invariants of solid tori. This provides a geometric understanding of the $$\mathrm {SL}(2,\mathbb {Z})$$
SL
(
2
,
Z
)
-equivariance of these indicators.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference14 articles.
1. Bakalov, B., Kirillov, A.: Lectures on Tensor Categories and Modular Functors, vol. 21. University Series Lectures, AMS (2001)
2. Balsam,B., Kirillov,A.: Turaev–Viro Invariants as an Extended TQFT. arxiv.org/abs/1004.1533 (2010)
3. Carqueville, N., Meusburger, C., Schaumann, G.: 3-Dimensional defect TQFTs and their tricategories. Adv. Math. 364, 107024 (2020)
4. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, vol. 205. American Mathematical Society, Mathematical Surveys and Monographs (2015)
5. Kashina, Y., Sommerhäuser, Y., Zhu, Y.: On higher Frobenius–Schur indicators. Mem. Am. Math. Soc. 181(855), viii-65 (2006)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献