Abstract
AbstractMotivated by a quantum Zeno dynamics in a cavity quantum electrodynamics setting, we study the asymptotics of a family of symbols corresponding to a truncated momentum operator, in the semiclassical limit of vanishing Planck constant $$\hbar \rightarrow 0$$
ħ
→
0
and large quantum number $$N\rightarrow \infty $$
N
→
∞
, with $$\hbar N$$
ħ
N
kept fixed. In a suitable topology, the limit is the discontinuous symbol $$p\chi _D(x,p)$$
p
χ
D
(
x
,
p
)
where $$\chi _D$$
χ
D
is the characteristic function of the classically permitted region D in phase space. A refined analysis shows that the symbol is asymptotically close to the function $$p\chi _D^{(N)}(x,p)$$
p
χ
D
(
N
)
(
x
,
p
)
, where $$\chi _D^{(N)}$$
χ
D
(
N
)
is a smooth version of $$\chi _D$$
χ
D
related to the integrated Airy function. We also discuss the limit from a dynamical point of view.
Funder
Regione Puglia
Gruppo Nazionale per la Fisica Matematica
Istituto Nazionale di Fisica Nucleare
Ministero dell’Università e della Ricerca
Università degli Studi di Bari Aldo Moro
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference52 articles.
1. Ambrosio, L., Figalli, A., Friesecke, G., Giannoulis, J., Paul, T.: Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data. Commun. Pure Appl. Math. 64(9), 1199–1242 (2011)
2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)
3. Athanassoulis, A., Paul, T.: On the selection of the classical limit for potentials with BV derivatives. J. Dyn. Differ. Equ. 25, 33–47 (2013)
4. Beskow, J., Nilsson, J.: The concept of wave function and irreducible representations of the Poincaré group. II. Unstable systems and exponential decay law, Ark. Fys. 34:561 (1967)
5. Bettelheim, E., Wiegmann, P.B.: Universal Fermi distribution of semiclassical nonequilibrium Fermi states. Phys. Rev. B 84, 085102 (2011)