Abstract
AbstractWe study the quantum geometry of the fuzzy sphere defined as the angular momentum algebra $$[x_i,x_j]=2\imath \lambda _p \epsilon _{ijk}x_k$$
[
x
i
,
x
j
]
=
2
ı
λ
p
ϵ
ijk
x
k
modulo setting $$\sum _i x_i^2$$
∑
i
x
i
2
to a constant, using a recently introduced 3D rotationally invariant differential structure. Metrics are given by symmetric $$3 \times 3$$
3
×
3
matrices g and we show that for each metric there is a unique quantum Levi-Civita connection with constant coefficients, with scalar curvature $$ \frac{1}{2}(\mathrm{Tr}(g^2)-\frac{1}{2}\mathrm{Tr}(g)^2)/\det (g)$$
1
2
(
Tr
(
g
2
)
-
1
2
Tr
(
g
)
2
)
/
det
(
g
)
. As an application, we construct Euclidean quantum gravity on the fuzzy unit sphere. We also calculate the charge 1 monopole for the 3D differential structure.
Funder
CONACyT
Fundacion Alberto y Dolores Andrade
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference31 articles.
1. Amelino-Camelia, G., Majid, S.: Waves on noncommutative spacetime and gamma-ray bursts. Int. J. Mod. Phys. A 15, 4301–4323 (2000)
2. Argota-Quiroz, J., Majid, S.: Quantum gravity on polygons and $${\mathbb{R}}\times {\mathbb{Z}}_n$$ FLRW model. Class. Quantum Grav. 37, 245001 (2020). (43pp)
3. Barrett, J.W.: Matrix geometries and fuzzy spaces as finite spectral triples. J. Math. Phys. 56, 082301 (2015)
4. Batista, E., Majid, S.: Noncommutative geometry of angular momentum space $$U(su_2)$$. J. Math. Phys. 44, 107–137 (2003)
5. Beggs, E.J., Majid, S.: *-compatible connections in noncommutative Riemannian geometry. J. Geom. Phys. 61, 95–124 (2011)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献