Abstract
AbstractThe Landau–Pekar equations describe the dynamics of a strongly coupled polaron. Here, we provide a class of initial data for which the associated effective Hamiltonian has a uniform spectral gap for all times. For such initial data, this allows us to extend the results on the adiabatic theorem for the Landau–Pekar equations and their derivation from the Fröhlich model obtained in previous works to larger times.
Funder
H2020 Excellent Science
H2020 Marie Sklodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference10 articles.
1. Frank, R.L., Gang, Z.: Derivation of an effective evolution equation for a strongly coupled polaron. Anal. PDE 10(2), 379–422 (2017)
2. Frank, R.L., Gang, Z.: A non-linear adiabatic theorem for the one-dimensional Landau- Pekar equations. J. Funct. Anal. 279, 7 (2020)
3. Frank, R. L., Seiringer, R.: Quantum corrections to the Pekar asymptotics of a strongly coupled polaron. Commun. Pure Appl. Math. 74, 544–588 (2021)
4. Fröhlich, H.: Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Lond. A 160(901), 230–241 (1937)
5. Landau, L.D., Pekar, S.I.: Effective mass of a polaron. Zh. Eksp. Teor. Fiz. 18(5), 419–423 (1948)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献