D3-brane supergravity solutions from Ricci-flat metrics on canonical bundles of Kähler–Einstein surfaces

Author:

Bruzzo UgoORCID,Fré Pietro,Shahzad Umar,Trigiante Mario

Abstract

AbstractD3 brane solutions of type IIB supergravity can be obtained by means of a classical Ansatz involving a harmonic warp factor, $$H(\textbf{y},\bar{\textbf{y}})$$ H ( y , y ¯ ) multiplying at power $$-1/2$$ - 1 / 2 the first summand, i.e., the Minkowski metric of the D3 brane world-sheet, and at power 1/2 the second summand, i.e., the Ricci-flat metric on a six-dimensional transverse space $$\mathcal {M}_6$$ M 6 , whose complex coordinates y are the arguments of the warp factor. Of particular interest is the case where $$\mathcal {M}_6={\text {tot}}[ K\left[ \left( \mathcal {M}_B\right) \right] $$ M 6 = tot [ K M B is the total space of the canonical bundle over a complex Kähler surface $$\mathcal {M}_B$$ M B . This situation emerges in many cases while considering the resolution à la Kronheimer of singular manifolds of type $$\mathcal {M}_6=\mathbb {C}^3/\Gamma $$ M 6 = C 3 / Γ , where $$\Gamma \subset \mathrm {SU(3)} $$ Γ SU ( 3 ) is a discrete subgroup. When $$\Gamma = \mathbb {Z}_4$$ Γ = Z 4 , the surface $$\mathcal {M}_B$$ M B is the second Hirzebruch surface endowed with a Kähler metric having $$\mathrm {SU(2)\times U(1)}$$ SU ( 2 ) × U ( 1 ) isometry. There is an entire class $${\text {Met}}(\mathcal{F}\mathcal{V})$$ Met ( F V ) of such cohomogeneity one Kähler metrics parameterized by a single function $$\mathcal{F}\mathcal{K}(\mathfrak {v})$$ F K ( v ) that are best described in the Abreu–Martelli–Sparks–Yau (AMSY) symplectic formalism. We study in detail a two-parameter subclass $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}\subset {\text {Met}}(\mathcal{F}\mathcal{V})$$ Met ( F V ) KE Met ( F V ) of Kähler–Einstein metrics of the aforementioned class, defined on manifolds that are homeomorphic to $$S^2\times S^2$$ S 2 × S 2 , but are singular as complex manifolds. Actually, $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}\subset {\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}}\subset {\text {Met}}(\mathcal{F}\mathcal{V})$$ Met ( F V ) KE Met ( F V ) ext Met ( F V ) is a subset of a four parameter subclass $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}}$$ Met ( F V ) ext of cohomogeneity one extremal Kähler metrics originally introduced by Calabi in 1983 and translated by Abreu into the AMSY action-angle formalism.$${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}}$$ Met ( F V ) ext contains also a two-parameter subclass $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}\mathbb {F}_2}$$ Met ( F V ) ext F 2 disjoint from $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}$$ Met ( F V ) KE of extremal smooth metrics on the second Hirzebruch surface that we rederive using constraints on period integrals of the Ricci 2-form. The Kähler–Einstein nature of the metrics in $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}$$ Met ( F V ) KE allows the construction of the Ricci-flat metric on their canonical bundle via the Calabi Ansatz, which we recast in the AMSY formalism deriving some new elegant formulae. The metrics in $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}$$ Met ( F V ) KE are defined on the base manifolds of U(1) fibrations supporting the family of Sasaki–Einstein metrics $$\textrm{SEmet}_5$$ SEmet 5 introduced by Gauntlett et al. (Adv Theor Math Phys 8:711–734, 2004), and already appeared in Gibbons and Pope (Commun Math Phys 66:267–290, 1979). However, as we show in detail using Weyl tensor polynomial invariants, the six-dimensional Ricci-flat metric on the metric cone of $${\mathcal M}_5 \in {\text {Met}}(\textrm{SE})_5$$ M 5 Met ( SE ) 5 is different from the Ricci-flat metric on $${\text {tot}}[ K\left[ \left( \mathcal {M}_{\textrm{KE}}\right) \right] $$ tot [ K M KE constructed via Calabi Ansatz. This opens new research perspectives. We also show the full integrability of the differential system of geodesics equations on $$\mathcal {M}_B$$ M B thanks to a certain conserved quantity which is similar to the Carter constant in the case of the Kerr metric.

Funder

CNPq

INDAM-GNSAGA

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3