D3-brane supergravity solutions from Ricci-flat metrics on canonical bundles of Kähler–Einstein surfaces
-
Published:2023-06-04
Issue:3
Volume:113
Page:
-
ISSN:1573-0530
-
Container-title:Letters in Mathematical Physics
-
language:en
-
Short-container-title:Lett Math Phys
Author:
Bruzzo UgoORCID, Fré Pietro, Shahzad Umar, Trigiante Mario
Abstract
AbstractD3 brane solutions of type IIB supergravity can be obtained by means of a classical Ansatz involving a harmonic warp factor, $$H(\textbf{y},\bar{\textbf{y}})$$
H
(
y
,
y
¯
)
multiplying at power $$-1/2$$
-
1
/
2
the first summand, i.e., the Minkowski metric of the D3 brane world-sheet, and at power 1/2 the second summand, i.e., the Ricci-flat metric on a six-dimensional transverse space $$\mathcal {M}_6$$
M
6
, whose complex coordinates y are the arguments of the warp factor. Of particular interest is the case where $$\mathcal {M}_6={\text {tot}}[ K\left[ \left( \mathcal {M}_B\right) \right] $$
M
6
=
tot
[
K
M
B
is the total space of the canonical bundle over a complex Kähler surface $$\mathcal {M}_B$$
M
B
. This situation emerges in many cases while considering the resolution à la Kronheimer of singular manifolds of type $$\mathcal {M}_6=\mathbb {C}^3/\Gamma $$
M
6
=
C
3
/
Γ
, where $$\Gamma \subset \mathrm {SU(3)} $$
Γ
⊂
SU
(
3
)
is a discrete subgroup. When $$\Gamma = \mathbb {Z}_4$$
Γ
=
Z
4
, the surface $$\mathcal {M}_B$$
M
B
is the second Hirzebruch surface endowed with a Kähler metric having $$\mathrm {SU(2)\times U(1)}$$
SU
(
2
)
×
U
(
1
)
isometry. There is an entire class $${\text {Met}}(\mathcal{F}\mathcal{V})$$
Met
(
F
V
)
of such cohomogeneity one Kähler metrics parameterized by a single function $$\mathcal{F}\mathcal{K}(\mathfrak {v})$$
F
K
(
v
)
that are best described in the Abreu–Martelli–Sparks–Yau (AMSY) symplectic formalism. We study in detail a two-parameter subclass $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}\subset {\text {Met}}(\mathcal{F}\mathcal{V})$$
Met
(
F
V
)
KE
⊂
Met
(
F
V
)
of Kähler–Einstein metrics of the aforementioned class, defined on manifolds that are homeomorphic to $$S^2\times S^2$$
S
2
×
S
2
, but are singular as complex manifolds. Actually, $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}\subset {\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}}\subset {\text {Met}}(\mathcal{F}\mathcal{V})$$
Met
(
F
V
)
KE
⊂
Met
(
F
V
)
ext
⊂
Met
(
F
V
)
is a subset of a four parameter subclass $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}}$$
Met
(
F
V
)
ext
of cohomogeneity one extremal Kähler metrics originally introduced by Calabi in 1983 and translated by Abreu into the AMSY action-angle formalism.$${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}}$$
Met
(
F
V
)
ext
contains also a two-parameter subclass $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{ext}\mathbb {F}_2}$$
Met
(
F
V
)
ext
F
2
disjoint from $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}$$
Met
(
F
V
)
KE
of extremal smooth metrics on the second Hirzebruch surface that we rederive using constraints on period integrals of the Ricci 2-form. The Kähler–Einstein nature of the metrics in $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}$$
Met
(
F
V
)
KE
allows the construction of the Ricci-flat metric on their canonical bundle via the Calabi Ansatz, which we recast in the AMSY formalism deriving some new elegant formulae. The metrics in $${\text {Met}}(\mathcal{F}\mathcal{V})_{\textrm{KE}}$$
Met
(
F
V
)
KE
are defined on the base manifolds of U(1) fibrations supporting the family of Sasaki–Einstein metrics $$\textrm{SEmet}_5$$
SEmet
5
introduced by Gauntlett et al. (Adv Theor Math Phys 8:711–734, 2004), and already appeared in Gibbons and Pope (Commun Math Phys 66:267–290, 1979). However, as we show in detail using Weyl tensor polynomial invariants, the six-dimensional Ricci-flat metric on the metric cone of $${\mathcal M}_5 \in {\text {Met}}(\textrm{SE})_5$$
M
5
∈
Met
(
SE
)
5
is different from the Ricci-flat metric on $${\text {tot}}[ K\left[ \left( \mathcal {M}_{\textrm{KE}}\right) \right] $$
tot
[
K
M
KE
constructed via Calabi Ansatz. This opens new research perspectives. We also show the full integrability of the differential system of geodesics equations on $$\mathcal {M}_B$$
M
B
thanks to a certain conserved quantity which is similar to the Carter constant in the case of the Kerr metric.
Funder
CNPq INDAM-GNSAGA Ministero dell’Istruzione, dell’Università e della Ricerca
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference48 articles.
1. Abreu, M.: Kähler geometry of toric manifolds in symplectic coordinates. In: Symplectic and Contact Topology: Interactions and Perspectives, vol. 35. Fields Institute Communications, American Mathematical Society, Providence, pp. 1–24 (2003) 2. Abreu, M.: Toric Kähler metrics: cohomogeneity one examples of constant scalar curvature in action-angle coordinates. J. Geom. Symm. Phys. 17, 1–33 (2010) 3. Anselmi, D., Billò, M., Fré, P., Girardello, L., Zaffaroni, A.: ALE manifolds and conformal field theories. Int. J. Mod. Phys. A 9, 3007–3058 (1994) 4. Bertolini, M., Campos, V.L., Ferretti, G., Fré, P., Salomonson, P., Trigiante, M.: Supersymmetric three-branes on smooth ALE manifolds with flux. Nucl. Phys. B 617, 3–42 (2001) 5. Bertolini, M., Campos, V.L., Ferretti, G., Fré, P., Salomonson, P., Trigiante, M.: BPS three-brane solution on smooth ALE manifolds with flux. Fortsch. Phys. 50, 802–807 (2002)
|
|