Characterizing Schwarz maps by tracial inequalities

Author:

Carlen EricORCID,Müller-Hermes AlexanderORCID

Abstract

AbstractLet $$\phi $$ ϕ be a positive map from the $$n\times n$$ n × n matrices $$\mathcal {M}_n$$ M n to the $$m\times m$$ m × m matrices $$\mathcal {M}_m$$ M m . It is known that $$\phi $$ ϕ is 2-positive if and only if for all $$K\in \mathcal {M}_n$$ K M n and all strictly positive $$X\in \mathcal {M}_n$$ X M n , $$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ ϕ ( K X - 1 K ) ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) . This inequality is not generally true if $$\phi $$ ϕ is merely a Schwarz map. We show that the corresponding tracial inequality $${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$ Tr [ ϕ ( K X - 1 K ) ] Tr [ ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) ] holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.

Funder

Directorate for Mathematical and Physical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference22 articles.

1. Araki,H.: Inequalities in Von Neumann Algebras, in Les rencontres physiciens-mathématiciens de Strasbourg RCP25, 22, 1–25 (1975)

2. Bhatia, R., Davis, C.: More operator versions of the Schwarz inequality. Commun. Math. Phys. 2, 239–244 (2000)

3. Carlen,E. A.: On some convexity and monotonicity inequalities of Elliott Lieb, Preprint http://arxiv.org/abs/2202.03591

4. Carlen, E.A., Zhang, H.: Monotonicity versions of Epstein’s Concavity Theorem and related inequalities. Linear Algebra Appl. 654, 289–310 (2022)

5. Choi, M.D.: Positive linear maps on C*-algebras. Can. J. Math. 24, 520–529 (1972)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A class of Schwarz qubit maps with diagonal unitary and orthogonal symmetries;Journal of Physics A: Mathematical and Theoretical;2024-09-10

2. Universal constraint for relaxation rates of semigroups of qubit Schwarz maps;Journal of Physics A: Mathematical and Theoretical;2024-04-22

3. Equality cases in monotonicity of quasi-entropies, Lieb’s concavity and Ando’s convexity;Journal of Mathematical Physics;2023-10-01

4. Some Convexity and Monotonicity Results of Trace Functionals;Annales Henri Poincaré;2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3