Abstract
AbstractLet $$\phi $$
ϕ
be a positive map from the $$n\times n$$
n
×
n
matrices $$\mathcal {M}_n$$
M
n
to the $$m\times m$$
m
×
m
matrices $$\mathcal {M}_m$$
M
m
. It is known that $$\phi $$
ϕ
is 2-positive if and only if for all $$K\in \mathcal {M}_n$$
K
∈
M
n
and all strictly positive $$X\in \mathcal {M}_n$$
X
∈
M
n
, $$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$
ϕ
(
K
∗
X
-
1
K
)
⩾
ϕ
(
K
)
∗
ϕ
(
X
)
-
1
ϕ
(
K
)
. This inequality is not generally true if $$\phi $$
ϕ
is merely a Schwarz map. We show that the corresponding tracial inequality $${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$
Tr
[
ϕ
(
K
∗
X
-
1
K
)
]
⩾
Tr
[
ϕ
(
K
)
∗
ϕ
(
X
)
-
1
ϕ
(
K
)
]
holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.
Funder
Directorate for Mathematical and Physical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference22 articles.
1. Araki,H.: Inequalities in Von Neumann Algebras, in Les rencontres physiciens-mathématiciens de Strasbourg RCP25, 22, 1–25 (1975)
2. Bhatia, R., Davis, C.: More operator versions of the Schwarz inequality. Commun. Math. Phys. 2, 239–244 (2000)
3. Carlen,E. A.: On some convexity and monotonicity inequalities of Elliott Lieb, Preprint http://arxiv.org/abs/2202.03591
4. Carlen, E.A., Zhang, H.: Monotonicity versions of Epstein’s Concavity Theorem and related inequalities. Linear Algebra Appl. 654, 289–310 (2022)
5. Choi, M.D.: Positive linear maps on C*-algebras. Can. J. Math. 24, 520–529 (1972)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献