Abstract
AbstractWe introduce the Dunkl version of the Laplace–Runge–Lenz vector associated with a finite Coxeter group W acting geometrically in $$\mathbb R^N$$
R
N
and with a multiplicity function g. This vector generalizes the usual Laplace–Runge–Lenz vector and its components commute with the Dunkl–Coulomb Hamiltonian given as the Dunkl Laplacian with an additional Coulomb potential $$\gamma /r$$
γ
/
r
. We study the resulting symmetry algebra $$R_{g, \gamma }(W)$$
R
g
,
γ
(
W
)
and show that it has the Poincaré–Birkhoff–Witt property. In the absence of a Coulomb potential, this symmetry algebra $$R_{g,0}(W)$$
R
g
,
0
(
W
)
is a subalgebra of the rational Cherednik algebra $$H_g(W)$$
H
g
(
W
)
. We show that a central quotient of the algebra $$R_{g, \gamma }(W)$$
R
g
,
γ
(
W
)
is a quadratic algebra isomorphic to a central quotient of the corresponding Dunkl angular momenta algebra $$H_g^{so(N+1)}(W)$$
H
g
s
o
(
N
+
1
)
(
W
)
. This gives an interpretation of the algebra $$H_g^{so(N+1)}(W)$$
H
g
s
o
(
N
+
1
)
(
W
)
as the hidden symmetry algebra of the Dunkl–Coulomb problem in $$\mathbb {R}^N$$
R
N
. By specialising $$R_{g, \gamma }(W)$$
R
g
,
γ
(
W
)
to $$g=0$$
g
=
0
, we recover a quotient of the universal enveloping algebra $$U(so(N+1))$$
U
(
s
o
(
N
+
1
)
)
as the hidden symmetry algebra of the Coulomb problem in $${\mathbb R}^N$$
R
N
. We also apply the Dunkl Laplace–Runge–Lenz vector to establish the maximal superintegrability of the generalised Calogero–Moser systems.
Funder
State Committee of Science
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference39 articles.
1. Goldstein, H.: More on the prehistory of the Laplace or Runge–Lenz vector. Am. J. Phys. 44, 1123 (1976). https://doi.org/10.1119/1.10202
2. Pauli, W.: On the hydrogen spectrum from the standpoint of the new quantum mechanics. Z. Physik 36, 336–363 (1926)
3. Hulthén, L.: Über die quantenmechanische Herleitung der Balmerterme. Zeitschrift für Physik 86(1–2), 21–23 (1933). https://doi.org/10.1007/BF01340179
4. Györgyi, G., Revai, J.: Hidden symmetry of the Kepler problem. Sov. Phys. JETP 48, 1445 (1965). http://www.jetp.ac.ru/cgi-bin/e/index/e/21/5/p967?a=list
5. Fock, V.: Hydrogen atom and non-Euclidean geometry. Bull. Acad. Sci. URSS 2, 169–188 (1935)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献