Exact results for the six-vertex model with domain wall boundary conditions and a partially reflecting end

Author:

Hietala LinneaORCID

Abstract

AbstractThe trigonometric six-vertex model with domain wall boundary conditions and one partially reflecting end on a lattice of size $$2n\times m$$ 2 n × m , $$m\le n$$ m n , is considered. The partition function is computed using the Izergin–Korepin method, generalizing the result of Foda and Zarembo from the rational to the trigonometric case. Thereafter, we specify the parameters in Kuperberg’s way to get a formula for the number of states as a determinant of Wilson polynomials. We relate this to a new type of alternating sign matrices, similar to how the six-vertex model with domain wall boundary conditions is related to normal alternating sign matrices. In an appendix, we compute the partition function again, showing that it is also possible to find it with the method of Foda and Wheeler.

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3