Set-theoretic Yang–Baxter & reflection equations and quantum group symmetries

Author:

Doikou AnastasiaORCID,Smoktunowicz Agata

Abstract

AbstractConnections between set-theoretic Yang–Baxter and reflection equations and quantum integrable systems are investigated. We show that set-theoretic R-matrices are expressed as twists of known solutions. We then focus on reflection and twisted algebras and we derive the associated defining algebra relations for R-matrices being Baxterized solutions of the A-type Hecke algebra $${\mathcal {H}}_N(q=1)$$ H N ( q = 1 ) . We show in the case of the reflection algebra that there exists a “boundary” finite sub-algebra for some special choice of “boundary” elements of the B-type Hecke algebra $${\mathcal {B}}_N(q=1, Q)$$ B N ( q = 1 , Q ) . We also show the key proposition that the associated double row transfer matrix is essentially expressed in terms of the elements of the B-type Hecke algebra. This is one of the fundamental results of this investigation together with the proof of the duality between the boundary finite subalgebra and the B-type Hecke algebra. These are universal statements that largely generalize previous relevant findings and also allow the investigation of the symmetries of the double row transfer matrix.

Funder

Engineering and Physical Sciences Research Council

engineering and physical sciences research council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When the Tracy-Singh product of matrices represents a certain operation on linear operators;Communications in Algebra;2024-07-12

2. Kirillov–Reshetikhin Modules and Quantum K-matrices;Communications in Mathematical Physics;2024-03-18

3. From braces to pre-Lie rings;Proceedings of the American Mathematical Society;2024-01-11

4. More on skew braces and their ideals;Contemporary Mathematics;2024

5. Skew Braces: A Brief Survey;Trends in Mathematics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3