Author:
Chen Xinhong,Letzter Gail,Lu Ming,Wang Weiqiang
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
national science foundation
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference18 articles.
1. Balagovic, M., Kolb, S.: The bar involution for quantum symmetric pairs. Represent. Theory 19, 186–210 (2015)
2. Baseilhac, P., Belliard, S.: Generalized q-Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93, 213–228 (2010)
3. Baseilhac, P., Vu, T.T.: Analogues of Lusztig’s higher order relations for the q-Onsager algebra. J. Math. Phys. 55, 081707 (2014)
4. Baseilhac, P., Vu, T.T.: Higher order relations for ADE-type generalized q-Onsager algebras. Lett. Math. Phys. 105, 1275–1288 (2015)
5. Bao, H., Wang, W.: A new approach to Kazhdan-Lusztig theory of type $$B$$ via quantum symmetric pairs. Astérisque 402 vii+134. arXiv:1310.0103 (2018)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Serre-Lusztig relations for ıquantum groups III;Journal of Pure and Applied Algebra;2023-04