On the rigidity of cosmological space-times

Author:

Avalos RodrigoORCID

Abstract

AbstractIn this paper, we analyse a family of geometrically well-behaved cosmological space-times $$(V^{n+1},g)$$ ( V n + 1 , g ) , which are foliated by intrinsically isotropic space-like hypersurfaces $$\{M_t\}_{t\in \mathbb {R}}$$ { M t } t R , which are orthogonal to a family of co-moving observers defined by a global time-like vector field U. In particular, this implies such space-times satisfy several of the well-known criteria for isotropic cosmological space-times, although, in the family in question, the simultaneity spaces $$(M_t,g_t)$$ ( M t , g t ) associated with U can have as sectional curvature a sign-changing function k(t). Being this clearly impossible in the FLRW family of standard cosmological space-times, it motivates us to revisit the geometric rigidity consequences of different definitions of isotropy available in the literature. In this analysis, we divide such definition according to whether the isometries involved are taken to be (local) space-time (STI space-times) or (local) space isometries (SI space-times) of $$(M_t,g_t)$$ ( M t , g t ) for each t. This subtlety will be shown to be critical, proving that only when space-time isometries are considered one obtains the well-known rigidity properties associated with isotropic cosmological space-times. In particular, SI space-times will be shown to be a strictly larger class than the STI ones, allowing a family of basic cosmological curvature change models which are not even locally isometric to any FLRW space-time.

Funder

Alexander von Humboldt-Stiftung

Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico

Universität Potsdam

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference24 articles.

1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences. Springer, New York (1993)

2. Besse, A.L.: Einstein Manifolds. English. Reprint of the 1987 edition. Springer, Berlin (2008)

3. Blau, M.: Lecture notes on general relativity. 2022. http://www.blau.itp.unibe.ch/GRLecturenotes.html

4. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1993)

5. Carroll, S.M.: Spacetime and Geometry. An Introduction to General Relativity. English. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108770385

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3