1. Childs, H.: Architectural challenges and solutions for petascale postprocessing. J. Phys. 78(1), 12 (2007)
2. Gamell, M., Rodero, I., Parashar, M., Poole, S.: “Exploring energy and performance behaviors of data-intensive scientific workflows on systems with deep memory hierarchies”. In: Proceedings of the 20th International Conference on High Performance Computing (HiPC), pp. 1–10. (2013)
3. Zhang, F., Docan, C., Parashar, M., Klasky, S.: “Dads: a dynamic and adaptive data space for interacting parallel applications”. In: Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2010), Marina Del Rey (2010)
4. Bennett, J.C., Abbasi, H., Bremer, P.-T., Grout, R., Gyulassy, A., Jin, T., Klasky, S., Kolla, H., Parashar, M., Pascucci, V., Pebay, P., Thompson, D., Yu, H., Zhang, F., Chen, J.: “Combining in-situ and in-transit processing to enable extreme-scale scientific analysis”. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, ser. SC ’12, 2012, pp. 49:1–49:9
5. Gamell, M., Rodero, I., Parashar, M., Bennett, J., et al.: “Exploring power behaviors and tradeoffs of in-situ data analytics”. In: International Conferencce on High Performance Computing Networking, Storage and Analysis (SC), pp. 1–12. Denver, Nov 2013