Author:
Mughaid Ala,Alnajjar Asma,El-Salhi Subhieh M.,Almakadmeh Khaled,AlZu’bi Shadi
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Aburomman, A.A., Reaz, M.B.I.: Ensemble of binary SVM classifiers based on PCA and LDA feature extraction for intrusion detection. In: 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 636–640. IEEE, Xi’an, China (2016)
2. Afaneh, S., Al-Mousa, M.R., Al-hamid, H.S., Bara’h Suliman, A.-A., Alia, M., Almimi, H., Alkhatib, A.A.: Security challenges review in Agile and DevOps practices. In: 2023 International Conference on Information Technology (ICIT), pp. 102–107. IEEE, Amman, Jordan (2023)
3. Al-Jarrah, O.Y., Al-Hammdi, Y., Yoo, P.D., Muhaidat, S., Al-Qutayri, M.: Semi-supervised multi-layered clustering model for intrusion detection. Digit. Commun. Netw. 4(4), 277–286 (2018)
4. Hasan, M., Islam, M.M., Zarif, M.I.I., Hashem, M.: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet Things 7, 100059 (2019)
5. Adeyemo, V.E., Abdullah, A., JhanJhi, N., Supramaniam, M., Balogun, A.O.: Ensemble and deep-learning methods for two-class and multi-attack anomaly intrusion detection: an empirical study. Int. J. Adv. Comput. Sci. Appl. 10(9), 520–528 (2019)