Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study

Author:

Liu PeiniORCID,Guitart Jordi

Abstract

AbstractContainerization technology offers an appealing alternative for encapsulating and operating applications (and all their dependencies) without being constrained by the performance penalties of using Virtual Machines and, as a result, has got the interest of the High-Performance Computing (HPC) community to obtain fast, customized, portable, flexible, and reproducible deployments of their workloads. Previous work on this area has demonstrated that containerized HPC applications can exploit InfiniBand networks, but has ignored the potential of multi-container deployments which partition the processes that belong to each application into multiple containers in each host. Partitioning HPC applications has demonstrated to be useful when using virtual machines by constraining them to a single NUMA (Non-Uniform Memory Access) domain. This paper conducts a systematical study on the performance of multi-container deployments with different network fabrics and protocols, focusing especially on Infiniband networks. We analyze the impact of container granularity and its potential to exploit processor and memory affinity to improve applications’ performance. Our results show that default Singularity can achieve near bare-metal performance but does not support fine-grain multi-container deployments. Docker and Singularity-instance have similar behavior in terms of the performance of deployment schemes with different container granularity and affinity. This behavior differs for the several network fabrics and protocols, and depends as well on the application communication patterns and the message size. Moreover, deployments on Infiniband are also more impacted by the computation and memory allocation, and because of that, they can exploit the affinity better.

Funder

Generalitat de Catalunya

Agencia Estatal de Investigación

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control Groups Added Latency in NFVs: An Update Needed?;2023 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN);2023-11-07

2. Performance Characterization of Multi-Container Deployment Schemes for Online Learning Inference;2023 IEEE 16th International Conference on Cloud Computing (CLOUD);2023-07

3. Toward the Observability of Cloud-Native Applications: The Overview of the State-of-the-Art;IEEE Access;2023

4. Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12

5. Containers in HPC: a survey;The Journal of Supercomputing;2022-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3