Author:
Porwik Piotr,Wrobel Krzysztof,Orczyk Tomasz,Doroz Rafał
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining: a literature review. J. King Saud Univ. Comput. Inf. Sci. 34(10, Part B), 9523–9540 (2022)
2. Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept drift. Data Min. Knowl. Disc. 30(4), 964–994 (2016)
3. Yu, H., Zhang, Q., Liu, T., Lu, J., Wen, Y., Zhang, G.: META-ADD: a meta-learning based pre-trained model for concept drift active detection. Inf. Sci. 608, 996–1009 (2022)
4. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46, 1–37 (2014)
5. Adams, J.N., van Zelst, S.J., Rose, T., van der Aalst, W.M.: Explainable concept drift in process mining. Inf. Syst. 114, 102177 (2023)