Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Ngo, D.M., Pham-Quoc, C., Thinh, T.N.: Heterogeneous hardware-based network intrusion detection system with multiple approaches for SDN. Mobile Networks and Applications 25(3), 1178–1192 (2020)
2. Yungaicela-Naula, N.M., Vargas-Rosales, C., Perez-Diaz, J.A.: SDN-based architecture for transport and application layer DDoS attack detection by using machine and deep learning. IEEE Access 9, 108495–108512 (2021)
3. Anyanwu, G. O., Nwakanma, C. I., Lee, J. M., & Kim, D. S.: Optimization of RBF-SVM kernel using grid search algorithm for DDoS attack detection in SDN-based VANET. IEEE Internet of Things Journal. (2022)
4. Sebbar, A., Zkik, K., Baddi, Y., Boulmalf, M., & Ech-Cherif El Kettani, M. D.: Secure data sharing framework based on supervised machine learning detection system for future SDN-based networks. Machine Intelligence and Big Data Analytics for Cybersecurity Applications, 355–371 (2021).
5. Ravi, V., Chaganti, R., Alazab, M.: Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system. Comput. Electr. Eng.. Electr. Eng. 102, 108156 (2022)