COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Link
https://link.springer.com/content/pdf/10.1007/s10586-023-03972-5.pdf
Reference37 articles.
1. Alyasseri, Z.A.A.: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. Expert. Syst. 39(3), e12759 (2022)
2. Alzubaidi, M.A., et al.: A novel computational method for assigning weights of importance to symptoms of COVID-19 patients. Artif. Intell. Med. 112, 102018 (2021)
3. Amini, N., Shalbaf, A.: Automatic classification of severity of COVID-19 patients using texture feature and random forest based on computed tomography images. Int. J. Imaging Syst. Technol. 32(1), 102–110 (2022)
4. Aswathy, A.L., Hareendran, A., Vinod Chandra, S.S.: COVID-19 diagnosis and severity detection from CT-images using transfer learning and back propagation neural network. J. Infect. Public Health 14(10), 1435–1445 (2021)
5. Al-Azawi, R.J., et al.: Efficient classification of COVID-19 CT scans by using q-transform model for feature extraction. PeerJ Comput. Sci. 7, e553 (2021)
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing COVID-19 diagnosis from lung CT scans using optimized quantum-inspired complex convolutional neural network with ResNeXt-50;Biomedical Signal Processing and Control;2024-09
2. Seeker optimization with mask RCNN based efficient model for Covid-19 detection and severity analysis using CT images;OPSEARCH;2024-08-09
3. A predictive model to explore risk factors for severe COVID-19;Scientific Reports;2024-08-06
4. DeepSeverity: Detection Different Stages of COVID-19 Disease with Combined Convolutional and Bayesian-BiLSTM Models;2024-06-03
5. From prediction to design: Recent advances in machine learning for the study of 2D materials;Nano Energy;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3