DDD: Distributed Dataset DNS

Author:

White-Swift JosephORCID,Fumagalli Andrea

Abstract

AbstractThe advent of inexpensive data storage has resulted in larger and larger datasets as the cost of pruning data becomes more expensive then storing it for future insights. This decreasing cost of storage has also led to the practice of storing data in multiple locations for redundancy. However, without any uniform method of determining link costs to different storage sites, a dataset is not always retrieved from the most cost effective site. Distributed dataset DNS, or DDD, solves this problem in two key ways. The first allows “local” servers to provide meaningful information to a user in order to ensure that they target the location that offers the most advantageous network connection. The second allows other trusted servers to easily gain access to this information in a distributed way. These combined approaches aim to both lower aggregate network bandwidth usage and prevent single points of failure when retrieving dataset pointers.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference46 articles.

1. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: Proceedings of the 1997 Workshop on New Security Paradigms, NSPW ’97, pp. 48–60. Association for Computing Machinery, New York, NY, USA (1998). https://doi.org/10.1145/283699.283739

2. Alimi, R., Penno, R., Yang, Y.R., Kiesel, S., Previdi, S., Roome, W., Shalunov, S., Woundy, R.: Application-layer traffic optimization (ALTO) protocol. RFC 7285, RFC Editor (2014). https://tools.ietf.org/html/rfc7285

3. Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J., Cameron, D., Christidis, D., Ciangottini, D., Dimitrov, G., Elsing, M., Garonne, V., di Girolamo, A., Goossens, L., Guan, W., Guenther, J., Javurek, T., Kuhn, D., Lassnig, M., Lopez, F., Magini, N., Molfetas, A., Nairz, A., Ould-Saada, F., Prenner, S., Serfon, C., Stewart, G., Vaandering, E., Vasileva, P., Vigne, R., Wegner, T.: Rucio: Scientific data management. Comput. Softw. Big Sci. 3(1), 11 (2019). https://doi.org/10.1007/s41781-019-0026-3

4. Bartholomew, D.: Mariadb vs. mysql. Tech. rep., SkySQL AB (2012)

5. Bassi, A., Beck, M., Moore, T., Plank, J.S., Swany, M., Wolski, R., Fagg, G.: The internet backplane protocol: a study in resource sharing. Future Gen. Comput. Syst. 19(4), 551–561 (2003). Selected papers from the IEEE/ACM International Symposium on Cluster Computing and the Grid, Berlin-Brandenburg Academy of Sciences and Humanities, Berlin, Germany, 21–24 May 2002. https://doi.org/10.1016/S0167-739X(03)00033-5. https://www.sciencedirect.com/science/article/pii/S0167739X03000335

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3