Parallel mutation testing for large scale systems

Author:

Cañizares Pablo C.,Núñez Alberto,Filgueira Rosa,de Lara Juan

Abstract

AbstractMutation testing is a valuable technique for measuring the quality of test suites in terms of detecting faults. However, one of its main drawbacks is its high computational cost. For this purpose, several approaches have been recently proposed to speed-up the mutation testing process by exploiting computational resources in distributed systems. However, bottlenecks have been detected when those techniques are applied in large-scale systems. This work improves the performance of mutation testing using large-scale systems by proposing a new load distribution algorithm, and parallelising different steps of the process. To demonstrate the benefits of our approach, we report on a thorough empirical evaluation, which analyses and compares our proposal with existing solutions executed in large-scale systems. The results show that our proposal outperforms the state-of-the-art distribution algorithms up to 35% in three different scenarios, reaching a reduction of the execution time of—at best—up to 99.66%.

Funder

Ministerio de Economía y Competitividad

Comunidad de Madrid

Directorate-General for Research and Innovation

Universidad Autónoma de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutation Testing of Smart Contracts As a Service;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3