1. Xu, R., Baracaldo, N., Joshi, J.: Privacy-preserving machine learning: Methods, challenges and directions. Preprint at arXiv:2108.04417 (2021)
2. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y., Communication-efficient learning of deep networks from decentralized data, (2016). [Online]. Available: arXiv:1602.05629
3. Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A.S., Shumailov, I., Papernot, N.: When the curious abandon honesty: Federated learning is not private. [Online]. Available: arXiv:2112.02918 (2021)
4. Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., Liu, J.: Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent, [Online]. Available: arXiv:1705.09056 (2017)
5. Cyffers, E., Bellet, A.: Privacy amplification by decentralization, (2020). [Online]. Available: arXiv:2012.05326