A variable neighborhood search based genetic algorithm for flexible job shop scheduling problem
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Link
http://link.springer.com/article/10.1007/s10586-017-1420-4/fulltext.html
Reference26 articles.
1. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990)
2. Zhang, G., Gao, L., Shi, Y.: An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst. Appl. 38(4), 3563–3573 (2011)
3. Nouri, H.E., Driss, O.B., Ghédira, K.: Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model. J. Ind. Eng. Int. 1(1), 1–14 (2017)
4. Xia, W., Wu, Z.: An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problem. Comput. Ind. Eng. 48, 409–25 (2005)
5. Lu, C., Li, X., Gao, L., et al.: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times. Comput. Ind. Eng. 2017(104), 156–174 (2017)
Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times;Engineering Applications of Artificial Intelligence;2024-07
2. Research on the performance of harmony search with local search algorithms for solving flexible job-shop scheduling problem;Journal of Intelligent & Fuzzy Systems;2024-03-27
3. Optimization of Static Patient Admission Scheduling using the Variable Neighborhood Search Method;Procedia Computer Science;2024
4. A Hybrid Meta-Heuristic to Solve Flexible Job Shop Scheduling Problem;Unsupervised and Semi-Supervised Learning;2024
5. Improved genetic algorithm based on multi-layer encoding approach for integrated process planning and scheduling problem;Robotics and Computer-Integrated Manufacturing;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3