cuConv: CUDA implementation of convolution for CNN inference

Author:

Jordà MarcORCID,Valero-Lara Pedro,Peña Antonio J.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference34 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous distributed systems. CoRR arXiv:1603.04467 (2016)

2. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.: cuDNN: efficient primitives for deep learning. CoRR (2014)

3. D455, I.R.D.C.: https://www.intelrealsense.com/depth-camera-d455 (2021)

4. Dongarra, J.J., Hammarling, S., Higham, N.J., Relton, S.D., Valero-Lara, P., Zounon, M.: The design and performance of batched BLAS on modern high-performance computing systems. In: International conference on computational science (ICCS), pp. 495–504 (2017)

5. Dryden, N., Maruyama, N., Moon, T., Benson, T., Snir, M., Van Essen, B.: Channel and filter parallelism for large-scale CNN training. In: Proceedings of the international conference for high performance computing, networking, storage and analysis, SC 2019. Association for computing machinery, New York, NY, USA (2019). https://doi.org/10.1145/3295500.3356207

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Direct Convolution Using Convolution Slicing Optimization and ISA Extensions;ACM Transactions on Architecture and Code Optimization;2023-12-14

2. Mixed-Precision S/DGEMM Using the TF32 and TF64 Frameworks on Low-Precision AI Tensor Cores;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

3. ConvDarts: a fast and exact convolutional algorithm selector for deep learning frameworks;CCF Transactions on High Performance Computing;2023-09-20

4. Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images;Journal of Medical and Biological Engineering;2023-06

5. A large-scale heterogeneous computing framework for non-uniform sampling two-dimensional convolution applications;CCF Transactions on High Performance Computing;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3