Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Link
http://link.springer.com/content/pdf/10.1007/s10586-019-02953-x.pdf
Reference44 articles.
1. Asl, B.M., Setarehdan, S.K., Mohebbi, M.: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44(1), 51–64 (2008)
2. Ge, D., Srinivasan, N., Krishnan, S.M.: Cardiac arrhythmia classification using autoregressive modeling. Biomed. Eng. Online 1(1), 5 (2002)
3. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)
4. Berkaya, S.K., Uysal, A.K., Gunal, E.S., Ergin, S., Gunal, S., Gulmezoglu, M.B.: A survey on ECG analysis. Biomed. Signal Process. Control 43, 216–235 (2018)
5. Chen, Z., Xu, H., Luo, J., Zhu, T., Meng, J.: Low-power perceptron model based ECG processor for premature ventricular contraction detection. Microprocess. Microsyst. 59, 29–36 (2018)
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network;Physiological Reports;2024-09
2. A deep learning approach for inter-patient classification of premature ventricular contraction from electrocardiogram;Biomedical Signal Processing and Control;2024-08
3. Automated diagnosis of premature ventricular contraction arrhythmia through electrocardiogram analysis and machine learning techniques;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-07-06
4. Premature Ventricular Contractions Detection by Multi-Domain Feature Extraction and Auto-Encoder-based Feature Reduction;Circuits, Systems, and Signal Processing;2024-02-26
5. End-to-End Premature Ventricular Contraction Detection Using Deep Neural Networks;Sensors;2023-10-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3