Hybrid metaheuristic schemes with different configurations and feedback mechanisms for optimal clustering applications

Author:

Molokomme Daisy Nkele,Onumanyi Adeiza James,Abu-Mahfouz Adnan M.

Abstract

AbstractThis paper addresses the critical gap in the understanding of the effects of various configurations and feedback mechanisms on the performance of hybrid metaheuristics (HMs) in unsupervised clustering applications. Despite the widespread use of HMs due to their ability to leverage multiple optimization methods, the lack of comprehensive studies on their configuration and feedback mechanisms effects often results in sub-optimal clustering performances and premature convergence. To tackle these issues, we introduce two algorithms for implementing eight distinct HM schemes, focusing on the impacts of parallel and serial processing models along with different feedback mechanisms. Our approach involves selecting candidate metaheuristics based on a mix of evolutionary and swarm-based methods, including the k-means algorithm, to form various HM-based clustering schemes. These schemes were then rigorously evaluated across a range of datasets and feedback mechanisms, further assessing their efficiency in the deployment of smart grid base stations. Performance analysis was based on total fitness evaluations, timing capabilities, and clustering accuracy. The results revealed that parallel HMs with decoupled feedback mechanisms performed best in terms of accuracy but at the cost of slower convergence rates as compared to serial HMs. Our findings further suggest that serial HMs will be best suited for time-sensitive applications where a compromise between speed and accuracy is acceptable, while parallel HMs with decoupled feedback mechanisms are preferable for scenarios where precision is paramount. This research significantly contributes to the field by providing a detailed analysis of HM performance in varying conditions, thereby guiding the selection of appropriate HM schemes for specific clustering tasks.

Funder

Council for Scientific and Industrial Research, South Africa

University of Pretoria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3