A federated approach to Android malware classification through Perm-Maps

Author:

D’Angelo Gianni,Palmieri Francesco,Robustelli AntonioORCID

Abstract

AbstractIn the last decades, mobile-based apps have been increasingly used in several application fields for many purposes involving a high number of human activities. Unfortunately, in addition to this, the number of cyber-attacks related to mobile platforms is increasing day-by-day. However, although advances in Artificial Intelligence science have allowed addressing many aspects of the problem, malware classification tasks are still challenging. For this reason, the following paper aims to propose new special features, called permission maps (Perm-Maps), which combine information related to the Android permissions and their corresponding severity levels. Such features have proven to be very effective in classifying different malware families through the usage of a convolutional neural network. Also, the advantages introduced by the Perm-Maps have been enhanced by a training process based on a federated logic. Experimental results show that the proposed approach achieves up to a 3% improvement in average accuracy with respect to J48 trees and Naive Bayes classifier, and up to 16% compared to multi-layer perceptron classifier. Furthermore, the combined use of Perm-Maps and federated logic allows dealing with unbalanced training datasets with low computational efforts.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference48 articles.

1. Android: define a custom app permission. https://developer.android.com/guide/topics/permissions/defining. Accessed 2021

2. Android: Manifest.permission. https://developer.android.com/reference/android/Manifest.permission. Accessed 2021

3. Android: $\langle {{\rm permission}}\rangle $. https://developer.android.com/guide/topics/manifest/permission-element. Accessed 2021

4. Android: permissions on Android. https://developer.android.com/guide/topics/permissions/overview. Accessed 2021

5. Android: R.attr | protectionlevel. https://developer.android.com/reference/android/R.attr. Accessed 2021

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3