A life cycle environmental sustainability analysis of microbial protein production via power-to-food approaches

Author:

Sillman J.ORCID,Uusitalo V.,Ruuskanen V.,Ojala L.,Kahiluoto H.,Soukka R.,Ahola J.

Abstract

Abstract Purpose Renewable energy produced from wind turbines and solar photovoltaics (PV) has rapidly increased its share in global energy markets. At the same time, interest in producing hydrocarbons via power-to-X (PtX) approaches using renewables has grown as the technology has matured. However, there exist knowledge gaps related to environmental impacts of some PtX approaches. Power-to-food (PtF) application is one of those approaches. To evaluate the environmental impacts of different PtF approaches, life cycle assessment was performed. Methods The theoretical environmental potential of a novel concept of PtX technologies was investigated. Because PtX approaches have usually multiple technological solutions, such as the studied PtF application can have, several technological setups were chosen for the study. PtF application is seen as potentially being able to alleviate concerns about the sustainability of the global food sector, for example, as regards the land and water use impacts of food production. This study investigated four different environmental impact categories for microbial protein (MP) production via different technological setups of PtF from a cradle-to-gate perspective. The investigated impact categories include global warming potential, blue-water use, land use, and eutrophication. The research was carried out using a life cycle impact assessment method. Results and discussion The results for PtF processes were compared with the impacts of other MP production technologies and soybean production. The results indicate that significantly lower environmental impact can be achieved with PtF compared with the other protein production processes studied. The best-case PtF technology setups cause considerably lower land occupation, eutrophication, and blue-water consumption impacts compared with soybean production. However, the energy source used and the electricity-to-biomass efficiency of the bioreactor greatly affect the sustainability of the PtF approach. Some energy sources and technological choices result in higher environmental impacts than other MP and soybean production. When designing PtF production facilities, special attention should thus be given to the technology used. Conclusions With some qualifications, PtF can be considered an option for improving global food security at minimal environmental impact. If the MP via the introduced application substitutes the most harmful practices of production other protein sources, the saved resources could be used to, for example, mitigation purposes or to improve food security elsewhere. However, there still exist challenges, such as food safety–related issues, to be solved before PtF application can be used for commercial use.

Funder

Strategic Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3