The effects of energy consumption of alumina production in the environmental impacts using life cycle assessment

Author:

Sáez-Guinoa Javier,García-Franco Enrique,Llera-Sastresa EvaORCID,Romeo Luis M.

Abstract

Abstract Purpose Aluminium industry emits around 1–2% of the world’s total greenhouse gas emissions. Up to one-third of those are linked to the thermal energy consumed during its initial process: the alumina refining (Bayer process). Previous studies consider the Bayer process a single stage despite its being made of several reaction stages. This work presents a disaggregated energy analysis of the Bayer process that facilitates to find relationships between the main variables in regular alumina production and the environmental impacts. Methods Two different thermodynamic simulations of the Bayer process were carried out using Aspen V11 software. The results of these simulations were validated with referenced data, and afterwards, they were used to perform a life cycle assessment. ISO 14040 and 14,044 standards were followed during the analysis. LCA was implemented on SimaPro 9.0, and ReCiPe 2016 Midpoint (H) method was used to calculate environmental impacts. The influence of bauxite mineral form, type of fuel (energy input), and the distance from the mine to the plant was analysed throughout the study. Results and discussion As expected, the type of fuel was revealed as the most crucial factor in the environmental impact of alumina production, with potential savings of up to 75.5% of CO2-equivalent emissions. Nonetheless, the tendency is diverse for other indicators, such as marine eutrophication or terrestrial acidification. On the other hand, while bauxite transportation always has the same impact on the different environmental indicators, bauxite mineral form affects differently depending on the fuel, causing variations in the CO2-eq emissions from 7.7 to 51.3%. Conclusions Results indicated that the electrification of heat-demanding processes and the use of renewable power is the most effective approach for reducing environmental impacts. This strategy, however, must be considered in combination with others, as interdependent effects exist on the type of mineral used. These results provide strong evidence of the potential for environmentally friendly strategies in the metal industry, including new processes, alternative fuels, or mineral switching to promote more sustainable aluminium production.

Funder

Universidad de Zaragoza

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3