Life cycle environmental impact assessment of lab-scale preparation of porous alumina pellets as substrate for hydrogen separation metal layer-based membranes

Author:

Battiston Simone,Fiameni StefaniaORCID,Fasolin Stefano,Barison Simona,Armelao Lidia

Abstract

Abstract Purpose The study aimed to identify the environmental hotspots of lab-scale preparation of high purity porous Al2O3 pellets with suitable feature to work properly as metal layer-based deposition substrates for hydrogen separation membranes. The work intention was providing hints that may help the designing of upscaled systems, fundamental for the development of a possible future industrial production of hydrogen separation metal layer-based membranes technology. Methods The goal of this study was achieved assessing and analyzing environmental impacts of Al2O3 pellet production at lab scale. Primary data were collected in Padua laboratories of National Research Council of Italy. Secondary data were retrieved from Ecoinvent 3.7 database. Life cycle assessment (LCA) was performed using Environmental Footprint 3.0 method employing SimaPro 9.3 as software. Moreover, the CML LCIA method v. 4.7 was used to verify the robustness analysis of characterized results. Results Life cycle impact assessment highlighted as the main driver of environmental impacts was mainly associated to the pellet consolidation process and their morphological characterization stage. In particular, the impact of the first energy consuming process resulted strictly related to the peculiar energy mix used (linked to the laboratory geographical location). Conversely, morphological characterization stage was found to affect mainly the mineral resource depletion category due to the Au coating used for performing scanning electron microscope (SEM) analyses. Conclusions The study identified the environmental hotspots related to lab-scale preparation of porous alumina pellets as substrate for hydrogen separation metal layer-based membranes. The optimization strategies evaluated in this work were addressed to improve the environmental profile of experimental activities considering several scenarios, in view of a possible industrial scale-up.

Funder

Ministero dello Sviluppo Economico

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3