Towards use of life cycle–based indicators to support continuous improvement in the environmental performance of avocado orchards in New Zealand

Author:

Majumdar ShreyasiORCID,McLaren Sarah J.

Abstract

Abstract Purpose A life cycle assessment (LCA) study was undertaken for the orchard stage of the NZ avocado value chain, to guide the development of indicators for facilitating continuous improvement in its environmental profile. Methods The functional unit (FU) was 1 kg Hass avocados produced in NZ, up to the orchard gate. The baseline model assessed avocados produced in fully productive orchards, using input data collected from 49 orchards across 281 ha in the three main avocado growing regions of New Zealand. In addition, the non-productive and low production years of avocado orchards were assessed using data from four newly established avocado operations spread across 489 ha. Climate change, eutrophication, water use, freshwater ecotoxicity and terrestrial ecotoxicity results were calculated for each orchard. Finally, national scores were calculated for each impact category from the weighted averages of the individual orchard results in the baseline sample of the three studied regions. Results There was significant variability between orchards in different input quantities, as well as impact scores. The impact assessment results showed that fuel use and fertiliser/soil conditioner production and use on orchard were consistently the main hotspots for all impact categories except water use, where impacts were generally dominated by indirect water use (irrespective of whether the orchards were irrigated or not). When considering the entire orchard lifespan, the commercially productive stage of the orchard life contributed the most to all impact category results. However, the impacts associated with 1 kg avocados, when allocated based on the total impacts across the orchard lifespan, were 13–26% higher than the baseline results which considered only the commercially productive years of the orchard life. Conclusion The study identified the priority areas for focussed improvement efforts (in particular, fertiliser and fuel use for all impact categories, and agrichemical use for the ecotoxicity impacts). Second, the regional- and national-level impact scores obtained in this study can be used as benchmarks in indicator development to show growers their relative ranking in terms of environmental performance. When using the indicators and benchmarks in a monitoring scheme, consideration should be given to developing separate benchmarks (using area-based functional units) for young orchards. It will also be necessary to develop a better understanding of the reasons for the variability in inputs and impacts so that benchmarks can be tailored to account fairly and equitably for the variability between orchards and regions.

Funder

NZ Avocado

Massey University

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference106 articles.

1. Alaphilippe A, Boissy J, Simon S, Godard C (2016) Environmental impact of intensive versus semi-extensive apple orchards: use of a specific methodological framework for life cycle assessments (LCA) in perennial crops. J Clean Prod 127:555–561. https://doi.org/10.1016/j.jclepro.2016.04.031

2. Apparao DJ et al (2023) Situation and outlook for primary industries 2023. Ministry of Primary Industries. New Zealand. https://www.mpi.govt.nz/science/open-data-and-forecasting/situation-and-outlook-for-primary-industries-data/

3. Astier M, Merlín-Uribe Y, Villamil-Echeverri L, Garciarreal A, Gavito ME, Masera OR (2014) Energy balance and greenhouse gas emissions in organic and conventional avocado orchards in Mexico. Ecol Ind 43:281–287. https://doi.org/10.1016/j.ecolind.2014.03.002

4. Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A (2009) How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope reduction by 2050. WWF-UK.

5. Australian Bureau of Statistics (2023) Measures of spread. https://www.abs.gov.au/statistics/understanding-statistics/statistical-terms-and-concepts/measures-spread#:~:text=The%20interquartile%20range%20(IQR)%20is,is%20not%20affected%20by%20outliers. Accessed 19 September 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3