Soil organic carbon as an indicator of land use impacts in life cycle assessment

Author:

De Laurentiis ValeriaORCID,Maier Stephanie,Horn Rafael,Uusitalo Ville,Hiederer Roland,Chéron-Bessou Cécile,Morais Tiago,Grant Tim,Milà i Canals Llorenç,Sala Serenella

Abstract

Abstract Purpose Anthropogenic activities are a major driver of soil and land degradation. Due to the spatial heterogeneity of soil properties and the global nature of most value chains, the modelling of the impacts of land use on soil quality for application in life cycle assessment (LCA) requires a regionalised assessment with global coverage. This paper proposes an approach to quantify the impacts of land use on soil quality, using changes in soil organic carbon (SOC) stocks as a proxy, following the latest recommendation of the Life Cycle Initiative. Methods An operational set of SOC-based characterisation factors for land occupation and land transformation were derived using spatial datasets (1 km resolution) and aggregated at the national and global levels. The developed characterisation factors were tested by means of a case study analysis, investigating the impact on soil quality caused by land use activities necessary to provide three alternative energy supply systems for passenger car transport (biomethane, ethanol, and solar electricity). Results obtained by applying characterisation factors at local, regional, and national levels were compared, to investigate the role of the level of regionalisation on the resulting impacts. Results and discussion Global maps of characterisation factors are presented for the 56 land use types commonly used in LCA databases, together with national and global values. Urban and industrial land uses present the highest impacts on SOC stocks, followed by severely degraded pastures and intensively managed arable lands. Instead, values obtained for extensive pastures, flooded crops, and urban green areas often report an increase in SOC stocks. Results show that the ranking of impacts of the three energy systems considered in the case study analysis is not affected by the level of regionalisation of the analysis. In the case of biomethane energy supply, impacts assessed using national characterisation factors are more than double those obtained with local characterisation factors, with less significant differences in the other two cases. Conclusions The integration of soil quality aspects in life cycle impact assessment methods is a crucial challenge due to the key role of soil conservation in ensuring food security and environmental protection. This approach allows the quantification of land use impacts on SOC stocks, taken as a proxy of soil quality. Further research needs to improve the assessment of land use impacts in LCA are identified, such as the ability to reflect the effects of agricultural and forestry management practices.

Funder

Directorate-General for Environment

Joint Research Centre

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3