Organizational Life Cycle Assessment of a wildlife park in northern Germany

Author:

Kunert Josephine,Bach Vanessa,Spey Ina-Kathrin,Finkbeiner Matthias

Abstract

Abstract Purpose Organizational Life Cycle Assessment (O-LCA) quantifies environmental impacts and identifies key environmental hotspots within a company’s value chain. Assessment of environmental impacts from animals has been carried out for livestock production, pet keeping, and hunting. One not yet considered application relates to touristic activities that involve animal husbandry, such as zoos or animal parks. Thus, the aim of this paper is to conduct the first O-LCA for a wildlife park and identify related hotspots. Method O-LCA was applied in the context of a wildlife park in northern Germany from a cradle-to-gate perspective for the reference period of 2022 considering the impact categories climate change (GWP), acidification (AP), eutrophication (EP), and photochemical ozone formation (POCP). The number of visitors (437,049 people) and animals of 16 different animal groups (787 animals of more than 100 species (e.g., wolves and birds)) was set as reference flow as the organizations’ activities are focused on tourism and animal species conservation. Information on animal feed, litter, suppliers, and transportation was derived from the animal care department's data, complemented by interviews with park experts and analysis of relevant documents and invoices. Results and discussion The organization had emissions of around 3,176 t CO2-eq. (GWP), 15 t SO2-eq. (AP), 6.5 t PO43- eq. (EP), and 7.2 t NOX-eq. (POCP) in 2022. Transportation of visitors being the main hotspot across all impact categories (e.g., 57.5% of GWP). Methane from ruminant respiration additionally accounts for 16 t CO2-eq. (0.5% of total GWP). For AP and EP, feed and food for Animal Care show high impacts with 23–27%, respectively. The lowest impacts show Electricity & Heat and End of Life of waste generated on site with around 1–8%. Carrying out a sensitivity analysis for the main hotspot transportation of visitors shows a 40% potential reduction for GWP, when visitors from Hamburg (90%) would use public transport exclusively. Conclusion This paper is the first to apply O-LCA to a wildlife park, identifying environmental hotspots and filling a gap in the assessment of tourism-related impacts on animals. This study pioneers the application of O-LCA to wildlife parks, identifying environmental hotspots in a tourism context. By analyzing multiple impact categories and park operations, we have gained a comprehensive understanding of the environmental footprint of wildlife parks.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3