Quantifying the life-cycle health impacts of a cobalt-containing lithium-ion battery

Author:

Arvidsson RickardORCID,Chordia Mudit,Nordelöf Anders

Abstract

Abstract Purpose Lithium-ion batteries (LIBs) have been criticized for contributing to negative social impacts along their life cycles, especially child labor and harsh working conditions during cobalt extraction. This study focuses on human health impacts — arguably the most fundamental of all social impacts. The aim is to quantify the potential life-cycle health impacts of an LIB cell of the type nickel-manganese-cobalt (NMC 811) in terms of disability-adjusted life years (DALY), as well as to identify hotspots and ways to reduce the health impacts. Methods A cradle-to-gate attributional life-cycle assessment study is conducted with the functional unit of one LIB cell and human health as the sole endpoint considered. The studied LIB is produced in a large-scale “gigafactory” in Sweden, the cobalt sulfate for the cathode is produced in China, and the cobalt raw material is sourced from the Democratic Republic of the Congo (DRC). Potential health impacts from both emissions and occupational accidents are quantified in terms of DALY, making this an impact pathway (or type II) study with regard to social impact assessment. Two scenarios for fatality rates in the artisanal cobalt mining in the DRC are considered: a high scenario at 2000 fatalities/year and a low scenario at 65 fatalities/year. Results Applying the high fatality rate, occupational accidents in the artisanal cobalt mining in the DRC contribute notably to the total life-cycle health impacts of the LIB cell (13%). However, emissions from production of nickel sulfate (used in the cathode) and of copper foil (the anode current collector) contribute even more (30% and 20%, respectively). These contributions are sensitive to the selected time horizon of the life-cycle assessment, with longer or shorter time horizons leading to considerably increased or decreased health impacts, respectively. Conclusions In order to reduce the health impacts of the studied LIB, it is recommended to (i) investigate the feasibility of replacing the copper foil with another material able to provide anode current collector functionality, (ii) reduce emissions from metal extraction (particularly nickel and copper), (iii) increase the recycled content of metals supplied to the LIB manufacturing, and (iv) improve the occupational standards in artisanal mining in the DRC, in particular by reducing fatal accidents.

Funder

Energimyndigheten

Swedish Electromobility Center

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference51 articles.

1. Adrianto LR, Pfister S, Hellweg S (2022) Regionalized life cycle inventories of global sulfidic copper tailings. Environ Sci Technol 56(7):4553–4564

2. Al Barazi S, Näher U, Vetter S, Schütte P, Liedtke M, Baier M, Franken G (2017) Cobalt from the DR Congo - potential, risks and significance for the global cobalt market, vol. 53 Commodity Top News. Federal Institute for Geosciences and Natural Resources, Hannover

3. Amnesty International (2013) Profits and loss. Mining and human richts in Katanga, Democratic Republic of the Congo, London

4. Amnesty International and Afrewatch (2016) “This is what we die for”. Human rights abuses in the Democratic Rebublic of the Congo power the global trade in cobalt. London

5. Arvidsson R, Hildenbrand J, Baumann H, Islam KMN, Parsmo R (2018) A method for human health impact assessment in social LCA: lessons from three case studies. Int J Life Cycle Assess 23(3):690–699

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3