Troubleshooting Noise and Vibration Issues of a Metro Braking System

Author:

Megna GianlucaORCID,Bracciali Andrea

Abstract

Abstract Purpose The braking system used on a recently upgraded metro vehicle showed very high low-frequency noise and vibrations levels in service affecting passengers’ comfort and leading to both brake calliper lever failures and to premature wear of brake pads. The characteristics of the phenomenon were such that it was classified as a groan noise type. As brake pads with different characteristics were tested trying to attenuate the issue without success, the paper describes the approach adopted by the authors to tackle the issue. Methods The dynamic behaviour of all the components involved during the braking phase (wheelset, callipers, brake discs and part of the bogie frame) was analysed by numerical simulations and tests during service, finding a coincidence of the natural frequencies of the wheelset and the brake support. As this resonance was believed to be the root cause of the problem, a number of structural modifications were proposed. Results and Conclusions After a careful selection process that included robustness and sensitivity analyses, the accepted modification proved to be effective in solving the issue and was applied with satisfaction to the whole fleet.

Funder

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An analysis of abnormal vibration and noise caused by shaft coupling misalignment of high-speed train;Engineering Failure Analysis;2024-11

2. Dynamic Responses of Layered Viscoelastic Half-Medium with Twin Tunnel Under Harmonic Load;Journal of Vibration Engineering & Technologies;2024-03-27

3. Special Issue from WMVC 2022;Journal of Vibration Engineering & Technologies;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3