Eigenfrequencies of a Three-Dimensional Arbitrarily-Curved Beam

Author:

Sakman Lutfi EmirORCID,Ozer Hasan OmurORCID,Sezgin AzizORCID,Durak BirkanORCID,Kapkin SuleORCID

Abstract

Abstract Research Problem The eigenvalue problem for the vibrations of an arbitrarily-curved three-dimensional beam with circular cross-section is solved by a series expansion method under various boundary conditions. Methodology The governing differential equations of motion are derived based on Euler-Bernoulli beam theory using the Hamilton’s principle. The general equations are given for any space curved beam with variable curvature and torsion, and solved for a specific example using the method of power series. Results and Conclusions The eigenfrequencies of a specific 3D beam were computed and compared with the eigenfrequencies of straight, circular, and helical beams, all having the same length. It was found that the eigenfrequencies of the 3D beam tend to increase slower compared to the other cases as the mode number increases. The main contribution of this study is the computation of the eigenfrequencies of a truly three-dimensional beam: torsion and curvature change continously along the beam length. In constrast, the most studied 3D case, helical beam, has constant curvature and torsion.

Funder

Istanbul University Cerrahpaşa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3