Abstract
AbstractWe establish general “collapse to the mean” principles that provide conditions under which a law-invariant functional reduces to an expectation. In the convex setting, we retrieve and sharpen known results from the literature. However, our results also apply beyond the convex setting. We illustrate this by providing a complete account of the “collapse to the mean” for quasiconvex functionals. In the special cases of consistent risk measures and Choquet integrals, we can even dispense with quasiconvexity. In addition, we relate the “collapse to the mean” to the study of solutions of a broad class of optimisation problems with law-invariant objectives that appear in mathematical finance, insurance, and economics. We show that the corresponding quantile formulations studied in the literature are sometimes illegitimate and require further analysis.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Finance,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献