Abstract
AbstractThe United States (U.S.) Department of Health and Human Services is interested in increasing geographical equity in access to liver transplant. The geographical disparity in the U.S. is fundamentally an outcome of variation in the organ supply to patient demand (s/d) ratios across the country (which cannot be treated as a single unit due to its size). To design a fairer system, we develop a nonlinear integer programming model that allocates the organ supply in order to maximize the minimum s/d ratios across all transplant centers. We design circular donation regions that are able to address the issues raised in legal challenges to earlier organ distribution frameworks. This allows us to reformulate our model as a set-partitioning problem. Our policy can be viewed as a heterogeneous donor circle policy, where the integer program optimizes the radius of the circle around each donation location. Compared to the current policy, which has fixed radius circles around donation locations, the heterogeneous donor circle policy greatly improves both the worst s/d ratio and the range between the maximum and minimum s/d ratios. We found that with the fixed radius policy of 500 nautical miles (NM), the s/d ratio ranges from 0.37 to 0.84 at transplant centers, while with the heterogeneous circle policy capped at a maximum radius of 500 NM, the s/d ratio ranges from 0.55 to 0.60, closely matching the national s/d ratio average of 0.5983. Our model matches the supply and demand in a more equitable fashion than existing policies and has a significant potential to improve the liver transplantation landscape.
Publisher
Springer Science and Business Media LLC
Subject
General Health Professions,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献