Using Principal Paths to Walk Through Music and Visual Art Style Spaces Induced by Convolutional Neural Networks

Author:

Gardini E.,Ferrarotti M. J.,Cavalli A.,Decherchi S.ORCID

Abstract

AbstractComputational intelligence, particularly deep learning, offers powerful tools for discriminating and generating samples such as images. Deep learning methods have been used in different artistic contexts for neural style transfer, artistic style recognition, and musical genre recognition. Using a constrained manifold analysis protocol, we discuss to what extent spaces induced by deep-learning convolutional neural networks can capture historical/stylistic progressions in music and visual art. We use a path-finding algorithm, called principal path, to move from one point to another. We apply it to the vector space induced by convolutional neural networks. We perform experiments with visual artworks and songs, considering a subset of classes. Within this simplified scenario, we recover a reasonable historical/stylistic progression in several cases. We use the principal path algorithm to conduct an evolutionary analysis of vector spaces induced by convolutional neural networks. We perform several experiments in the visual art and music spaces. The principal path algorithm finds reasonable connections between visual artworks and songs from different styles/genres with respect to the historical evolution when a subset of classes is considered. This approach could be used in many areas to extract evolutionary information from an arbitrary high-dimensional space and deliver interesting cognitive insights.

Funder

Istituto Italiano di Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3